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Advanced inferring abilities that are used for predator recognition and avoidance have been documented
in a variety of animal species that produce alarm calls. In contrast, evidence for cognitive abilities that
underpin predation avoidance in nonalarm-calling species is restricted to associative learning of heter-
ospecific alarm calls and predator presence. We investigated cognitive capacities that underlie the
perception and computation of external information beyond associative learning by addressing con-
textual information processing in pigeons, Columba livia, a bird species without specific alarm calls. We
used a habituation/dishabituation paradigm across sensory modes to test pigeons’ context-dependent
inferring abilities. The birds reliably took previous knowledge about predator presence into account
and responded with predator-specific scanning behaviour only if predator presence was not indicated
before or if the perceived level of urgency increased. Hence, pigeons’ antipredator behaviour was not
based on the physical properties of displayed stimuli or their referential content alone but on contextual
information, indicated by the kind and order of stimulus presentation and different sensory modes.
� 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Several vertebrate species have been shown to denote external
events in their vocalizations and previous studies have revealed
sophisticated inferring abilities in receivers that go beyond mere
associative processes (reviewed in e.g. Evans 2002; Seyfarth et al.
2010; Fitch & Zuberbühler, in press). The encoded referents of such
signals may range from broad to very specific contexts and seem to
inducemental representations of the external events eliciting them.
For instance, rhesusmonkeys,Macacamulatta, seem to differentiate
food call types by their external referents rather than by their
acoustic features (Hauser 1998), chickens, Gallus gallus domesticus,
seem to take past knowledge into account during foraging (Evans &
Evans 2007) and several alarm-calling species extract information
from both the signal itself and the context in which it is uttered
(Rainey et al. 2004; Ridley et al. 2007). Hence, receivers do not have
an automatically triggered behavioural response but seem to take
contextual knowledge into account. These sophisticated cognitive
abilities have been reported for species that show both sides of in-
formation transmission: signalling and receiving (Arnold &
Zuberbühler 2008; Ouattara et al. 2009a, b). However, there is by
no means a representational parity between signalling and receiv-
ing, nor is ‘meaning’ in a linguistic sense transmitted between sig-
naller and receiver (Fitch & Zuberbühler, in press). Howdifferent the
cognitive requirements of signallers and receivers might be is
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especially apparent in the alarm-calling behaviour of many species.
‘Functionally referential’ signals are often produced in threatening
situations and are thought to decrease the level of uncertainty about
a nearby threat in receivers (Seyfarth et al. 2010). They are highly
context specific, show an unambiguous physical structure and
trigger the same response in receivers as theactual event (e.g.Marler
et al. 1992). However, while there is debate about whether the sig-
naller intends to inform(Cheney&Seyfarth1990;Cheneyet al.1996;
Tomasello & Call 1997; Rendall et al. 2000) and about the exact
definition of the information content (Rendall et al. 2009), there is
growing evidence for elaborate inferring mechanisms in receivers
(Fischer 1988; Rendall et al. 1996; Zuberbühler et al. 1999).

Most studies so far have focused on animal species that produce
alarm calls in the context of predation and thus possess cognitive
abilities that are involved in both signalling and perceiving infor-
mation about predator presence. There is evidence that also some
nonalarm-calling species such as lacertid lizards, Oplurus cuvieri
cuvieri (Ito & Mori 2010), iguanian lizards, Amblyrhynchus cristatus
(Vitousek et al. 2007) and dik-diks, Madoqua guentheri (Lea et al.
2008) associate heterospecific vocal cues with predator presence
and that they eavesdrop on these signals to avoid predation. How-
ever, whether nonalarm-calling species are also able to decode the
referent of the signal and to infer the event that elicited it remains
unknown. In general, nonalarm-calling species may provide
a promising basis to address questions concerning cognitive mech-
anisms that underpin call interpretation in highly vocal species.
Specifically, we can test whether advanced interpretation mecha-
nisms found in alarm-calling species are specialized cognitive
by Elsevier Ltd. All rights reserved.
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abilities that are used for communication or whether they represent
more general inferring abilities that are not domain specific.

Pigeons, Columba livia, are prey for a variety of ground and aerial
predators in rural and urban habitats and thus represent an ideal
model species to investigate antipredator strategies. The vocal rep-
ertoire of pigeons is relatively limited and does not include specific
alarm calls (Sisson 1968; Rashotte et al. 1975); however, pigeons are
renowned for their extraordinary visual discriminative abilities and
memory capacities (Vaughan&Greene 1984; Cook et al.1990; Huber
et al. 2000; Aust & Huber 2006; Stephan et al. 2012). Although past
researchonpigeonshasmainlyconcentratedonvisual tasks, acoustic
playback experiments with pigeons provide a promising means to
investigate the birds’ inferring abilities. First, the perception of
auditorycues topredatorpresence is less costly (in termsof searching
time) than visual vigilance and predatorsmight be detected faster by
auditory cues than by visual ones. None the less, costs may also arise
from misinterpretations regarding elicited predator attention (Ingle
1968) or energetically costly antipredator behaviour (Ydenberg &
Dill 1986), although the exact determination of costs resulting from
antipredator behaviour is problematic (Lind & Cresswell 2005).
Consequently, evolution should favour individuals that reliably
detect predators also in the auditory domain. Second, pigeons might
infer different information from predator cues in sensory modes
other than the visual in terms of urgency. For instance, pigeons may
interpret both buzzard, Buteo buteo, calls and a buzzard to indicate
buzzard presence but also obtain different information from the two
signals about the distance or the visibility of the predator. Hence, the
two signals may elicit different behavioural responses to avoid pre-
dation depending on the level of urgency that is perceived by the
birds. This difference in response to cues in different sensory modes
could provide further insight into the relationship between urgency-
based and predator-specific antipredator behaviour. While the
majority of studies have focused on the effects of urgency on call
production (Macedonia & Evans 1993; Manser 2001; Manser et al.
2002; Templeton et al. 2005), only a few have addressed the
receiver’s behavioural output in response to the perceived level of
urgency (Warkentin et al. 2001; Randall & Rogovin2002; Leavesley&
Magrath 2005) or the impact of presentations across sensory modes
(Slocombe et al. 2011).

We tested pigeons for cross-modal contextual understanding
(using visual and acoustic cues). Notably, the birds should not
merely react to physical signal properties but also take previous
information about predator presence into account. For this pur-
pose, we used stuffed models of a common buzzard as a visual
predatory stimulus and a pheasant, Phasianus colchicus, as a control
stimulus in a habituation/dishabituation paradigm (Eimas et al.
1971). In addition, acoustic playbacks of buzzard calls served to
simulate predator presence at a different level of urgency to the
pigeons. Playbacks of pheasant calls served as a control stimulus in
the auditory domain. Specifically, we predicted pigeons would
dishabituate more strongly to buzzard models and buzzard calls
whenever pheasant stimuli were displayed before the buzzard
stimuli. If buzzard models are presented first, the birds should
show no response to buzzard calls. In contrast, if buzzard models
are perceived as being more urgent than buzzard calls, pigeons
should show unambiguous dishabituation to visual models if they
were habituated with buzzard calls before.

METHODS

Subjects and Housing

We tested 60 adult pigeons in pairs (N ¼ 30) fromMarch to June
2011. All birds were colour-ringed and individually identified. The
pigeons were housed in flocks of 8e16 individuals in outdoor
Please cite this article in press as: Stephan, C., Bugnyar, T., Pigeons integrat
http://dx.doi.org/10.1016/j.anbehav.2012.12.023
aviaries at the University of Vienna that were equipped with
perches, nestboxes and water dispensers. Water and grit were
freely available whereas food was provided indoors during visual
discrimination tasks independent of the present study and over the
weekend. Previous experience with predator encounters (acoustic,
visual or physical) was estimated by evaluating the subject’s
ontogenetic history. Only birds that had been either free flying in
the past or had visual access to the outdoors (and thus to predatory
attacks on wild conspecifics) participated in the present study. The
occurrence of raptor attacks in the direct vicinity of the aviaries has
been confirmed (C. Stephan, personal observation), although the
exact frequency of predator encounters remains unknown. All
subjects that participated in the experiments were housed in
accordance with the Austrian Federal Act on the Protection of An-
imals (Animal Protection Act e TSchG, BGBl. I Nr.118/2004). Fur-
thermore, as the present study was strictly noninvasive and based
on behavioural observations, all experiments were classified as
nonanimal experiments in accordance with the Austrian Animal
Experiments Act (x 2, Federal Law Gazette No. 501/1989).

Stimuli

We used representations of two roughly equally sized bird
species in two sensory modes, namely stuffed models and territory
calls. We used the common buzzard as a raptor species and
a pheasant as a control stimulus. The buzzard as the critical pred-
atory stimulus was chosen with regard to its geographical distri-
bution and habitat use during hunting, both enhancing the
likelihood that focal pigeons have had prior experience with it.
Within the visual domain we controlled for size, similar plumage
coloration and body orientation between a buzzard and a pheasant
model. This served to investigate whether pigeons could also dis-
criminate between perceptually similar models of two different
bird species. However, as the focal question addressed context-
dependent information processing across sensory modes with
a predator, we could have theoretically used any nonthreatening
object as a control stimulus. Both visual stimuli were presented
separately in a cardboard box, and we controlled the duration of
presentations by opening or closing a sliding door (Fig. 1).

Acoustic stimuli were obtained from an online source (http://
www.xeno-canto.org) and identified as uttered in territorial
behaviour. We used territory calls of two different buzzards and
two different pheasants and presented them alternately to the
different dyads of a group to reduce the effect of pseudoreplication.
A single buzzard call lasted approximately 0.7 s and was naturally
produced in a sequence of three subsequent calls, resulting in an
overall duration of about 5 s (including breaks of approximately
1.4 s each). The pheasant’s call lasted 0.3 s and was not naturally
produced in a sequence. We repeated pheasant calls three times
(including breaks of 1 s) and created sequences of about 3.5 s to
expose the birds to a similar number of calls (for examples of
spectrograms of acoustic stimuli see Fig. A1 in the Appendix). We
did not manipulate the length of single territory calls as these
reflect natural variation and provide perceptual features that may
enable pigeons to discriminate between a predator and a non-
predatory stimulus. To modify sequence length we used PRAAT DSP
package v. 5.1.29 (Boersma & Weenink 2011). All playbacks were
broadcast using an iPod Nano (fifth generation) connected to
a speaker amplifier (ION Block Rocker, 70 Hze50 kHz �3 dB).

Behavioural Variables and Data Analysis

We conducted an observational study prior to the playback study
to encode thepigeon’s behavioural repertoire in a variety of contexts.
We did not restrict the definition of behavioural variables to
e past knowledge across sensorymodalities, Animal Behaviour (2013),
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Table 1
Experimental conditions (‘Information’ refers to the informational content of the
dishabituation stimulus as compared to the habituation stimulus)

Group Habituation Dishabituation Information

1 Pheasant visual Buzzard visual Predator presence, high urgency
2 Pheasant acoustic Buzzard acoustic Predator presence, low urgency
3 Buzzard visual Buzzard acoustic Decreased urgency
4 Buzzard acoustic Buzzard visual Increased urgency
5 Pheasant visual Buzzard acoustic Predator presence, low urgency
6 Pheasant acoustic Buzzard visual Predator presence, high urgency

Figure 1. Visual stimuli. Stuffed models of (a) a common buzzard and (b) a pheasant. (c) Both visual stimuli were presented to the pigeons in a cardboard box.
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disturbing or threatening events as knowledge about the pigeon’s
natural response to predators is scarce and the reaction of captive
pigeons to simulated predator presence is largely unknown. The full
description of the subject’s activity pattern amounted to 17 variables
(for detailed information see Table A1 in the Appendix). One of these
variables was exclusively observed in the context of simulated
predator presence (predator-related scanning behaviour) and not
during theobservational period, inwhich thebirdsdidnot encounter
predator models or real predators. The birds also did not show this
kindof scanningbehaviour to pheasant stimuli. Hence,wehad to add
the description of this specialized behaviour after the first habitu-
ation trials. Althoughwe did not expect any information transfer, for
instance ‘functionally referential’ signalling between individuals, the
exact influence of surrounding conspecifics on the behaviour of the
focal subjectwasbeyondourknowledge. Thus, to prevent any impact
of audience effects on the bird’s reaction to displayed stimuli (e.g. the
absence of produced signals owing to the absence of potential re-
ceivers) and to reduce stress responses from separation, all pigeons
were tested inpairs. For this purpose, pair partnerswere determined
during the observational period. In all cases in which no affiliated
pigeon could be identified, we assigned nonagonistic conspecifics
from the same aviary. The bird’s behaviour was recorded during ex-
periments using a video camera (SonyDCR-SR55). Thefirst subject of
one pair that altered its behaviour in response to the dishabituation
stimulus was analysed as this guaranteed stimulus-directed
response behaviour and excluded response patterns that were eli-
cited mainly in reaction to the behaviour of the conspecific. We
analysed the videotapes in a frame-by-frame analysis using the Sol-
omon Coder beta v. 11.06.01 (A. Peter, www.solomoncoder.com) to
quantify the bird’s behavioural response. The occurrence and dura-
tion of each of the defined variables were recorded and analysed.

Procedure and Set-up

We applied a habituation/dishabituation paradigm to assess pi-
geons’ ability to infer predator presence across sensory modes and
contexts. All pairs of pigeons were assigned to six different groups
according to the kind and order of stimulus presentations during
habituation and dishabituation (Table 1), resulting in a total of five
pairs per group. Pigeons of groups 1 and 2 were presented with
pheasant cues in the habituation phase and with buzzard cues in the
dishabituationphase. The stimuliwere presented in the same sensory
modewithin groups (group 1: visual; group 2: auditory). Both groups
served to clarifywhetherpigeonsareperceptuallyable todiscriminate
both stimulus species within a sensory mode. Groups 5 and 6 were
also presented with pheasant cues in the habituation phase andwith
buzzard cues in the dishabituation phase but in different sensory
modes within groups. Hence, these groups tested for behavioural re-
sponses to referential and perceptual changes in the information that
was provided. Groups 3 and 4 addressed cross-modal predator rec-
ognition and the impact of sensorymodes inwhich information about
Please cite this article in press as: Stephan, C., Bugnyar, T., Pigeons integrate
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predator presence was perceived. Although habituation and dis-
habituation stimuli in both groups referred to buzzard presence, pi-
geons in group 3 were confronted with acoustic cues in the
dishabituation phase, which we expected to encode lower levels of
urgency (compared to previous information in the visual domain)
whereas birds in group 4 were presented with visual models that we
expected to represent an increased level of urgency (compared to
acoustic playbacks during the habituation phase). Every pair of pi-
geonswas tested onlyonce. The experiment for eachpair included the
baseline, the habituation and the dishabituation phases. At the
beginning of each experiment all pigeons except the focal pair were
removed from the test aviary and remained in visual and acoustic
isolation throughout the experimental phase. Visual and acoustic
stimuli were displayed at approximately the same distance (�0.5 m)
to the focal aviary.

Baseline

The empty cardboard box was placed in front of the open door of
the aviary at a height of 60 cm and was present throughout the
experiment over all groups. We displayed all models at this elevated
level asmost raptorsperchon thegroundonlyafter capturingpreyand
thus no longer represent an urgent threat. Hence, the elevated pre-
sentation of bird models was designed to control for realistic circum-
stances of risky predator presence. Additionally, this height was
chosen to guarantee good visual access from the aviary. The sliding
door was opened and closed constantly to habituate the birds to the
equipment.As soonas the focal subjectsno longerpaidanyattentionto
the procedure and returned to self- or partner-directed behaviour (e.g.
preening, sleeping, feeding), their behaviour was recorded for 5 min.

Habituation

As we could not prevent adjacently housed pigeons from
eavesdropping on displayed acoustic stimuli, we started with birds
that were assigned to groups inwhich the habituation stimulus was
a visual model. Hence, we avoided repeated exposure to acoustic
stimuli for birds before they were actually tested. To avoid con-
tinuous exposure to visual models for birds except the focal pair, we
positioned the cardboard box in such a way that only the focal pair
past knowledge across sensorymodalities, Animal Behaviour (2013),
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had full visual access to the model presented inside. Between
groups, we included a break of 2 weeks between acoustic habitu-
ations and a break of 1 week between visual habituations to avoid
the simulation of predator presence at a frequency likely to exceed
naturally occurring predator encounters.

For visual presentations, the stuffedmodel was positioned in the
cardboard box and was repeatedly visible to the birds for 20 s to
ensure that birds saw the stimulus. As birdswere expected to engage
mainly in self- or partner-directed behaviour (e.g. sleeping, feeding,
preening), a presentation length of 20 s was chosen to guarantee
that the pigeons perceived visual stimuli. Presentation phases were
separated by 20 s during which the box was closed and the model
occluded. These 40 s, consisting of one presentation and the break,
were defined as a trial. Trials were repeated until the focal pair
returned to baseline behaviour.We continued data collection for six
more trials of which the last three were used to analyse the birds’
habituated behaviour. For acoustic habituations, the birds were
habituated to either territory calls of pheasants (about 3.4 s) or
buzzards (about 5 s), followed by 20 s silence. The number of buz-
zard territory calls in a sequence that occurs naturallywas chosen as
a reference for stimulus lengths in the auditory domain to make
predator presence as ecologically valid as possible. Hence, although
presentation times were shorter for acoustic than for visual pre-
sentations, they are likely to resemble realistic conditions because
pigeons are not expected to perceive acoustic and visual cues of real-
life predators that are exactly the same length. The cardboard box
was also present duringplaybacks. The speaker amplifierwasplaced
near the aviary but not in the bird’s direct visual range (behind the
cardboard box) to prevent the birds from identifying the source of
acoustic stimuli. Again, we defined the duration of the habituation
phase by the birds’ return to baseline behaviour and carried out six
more trials ofwhich the last threewere analysed for the comparison
with behavioural responses to dishabituation stimuli.

Dishabituation

After the focal birds were habituated to the assigned stimulus,
the dishabituation stimulus was displayed. The respective stimulus
was presented once and the behavioural response of the pigeons
was recorded until the birds returned to baseline behaviour. For
visual dishabituation, the model was displayed for 20 s, as in the
habituation phase. After presentation, the sliding door was closed
and remained closed until the focal pair showed baseline behaviour
again. For acoustic dishabituation, the calls of the buzzards were
played for 5 s and the bird’s behaviour was recorded until they
returned to baseline behaviour.

Statistical Analysis

To examine whether the referent of the stimulus or the sensory
mode of presentation has had an effect on the number of trials the
birds needed to habituate, a KruskaleWallis test was applied over
all six groups. As the data did not meet the assumptions of nor-
mality (KolmogoroveSmirnov test: P ¼ 0.687) or homogeneity of
variance (Levene’s test: P ¼ 0.013), we used two-tailed non-
parametric ManneWhitney U tests, including a Bonferroni cor-
rection (a < 0.0125) to compare the number of trials to habituation.

To examine whether the birds perceived habituation and dis-
habituation stimuli as providing different or equivalent informa-
tion, we compared behavioural responses in both experimental
phases. However, as the detailed nature of pigeons’ antipredator
response has not been described, we first reduced all 17 encoded
behavioural variables to independent components using a principal
component analysis (PCA). Components with eigenvalues of at least
1 were extracted and a varimax-rotated correlation method was
Please cite this article in press as: Stephan, C., Bugnyar, T., Pigeons integrat
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used. As some of the variables had high loadings on more than one
component (>0.4), we had to eliminate eight of our originally
measured variables, resulting in nine variables with simple struc-
ture (see Table A2 in the Appendix). To ensure consistency in video
coding, 10 randomly chosen sample recordings were double coded
by a second person who had no knowledge about the stimuli dis-
played in the videos (visual stimuli were not visible in recordings
and videos were presented without sound). The interobserver
reliability tests revealed high Cohen’s kappa (k) coefficients for all
nine variables (all k�0.88, see Table A3 in the Appendix for details).
The comparisons of the number of trials to habituation and the PCA
were conducted using SPSS v. 17.0.1 (SPSS Inc., Chicago, IL, U.S.A.).

Afterwards, the condensed variables were entered in within-
group comparisons between the habituation and the dishabitua-
tion phases using Wilcoxon signed-ranks tests. One-tailed P values
were calculated in accordance with clearly directed predictions.
Owing to small sample sizes per group (N ¼ 5) and inaccurate
calculations of P values in most common statistical packages (in
which the test statistic is anticipated to approach a normal distri-
bution asymptotically, independently of sample size), we calculated
the test statistic (T) by hand and obtained one-tailed P values from
comparisons with critical values in tables (Mundry & Fischer 1998).

RESULTS

Trials to Habituation

There were significant stimulus-dependent differences in the
number of trials that the birds needed to habituate to presentations
(KruskaleWallis test: c2

3 ¼ 13:76, P¼ 0.003). Pigeons needed sig-
nificantlymore trials to habituate to simulated buzzard presence than
to pheasant displays in the acoustic domain (ManneWhitney U test:
U¼ 3.5, Nbuzzard ¼ 5, Npheasant ¼ 10, P¼ 0.005). The birds also needed
more trials to habituate to buzzard models than to pheasant models,
although this effect was not significant after Bonferroni corrections
(ManneWhitney U test: U¼ 8, Nbuzzard ¼ 5, Npheasant ¼ 10, P¼ 0.03).
Theeffectof thesensorymodeof stimuluspresentationwas significant
for pheasant (ManneWhitneyU test:U¼ 12.5,Nvisual¼ Nauditory¼ 10,
P¼ 0.003; Fig. 2) but not for buzzard displays (ManneWhitneyU test:
U¼ 9, Nvisual¼ Nauditory ¼ 5, P¼ 0.548). The presentation of
buzzard models also resulted in longer habituation phases than
pheasant calls (ManneWhitney U test: U¼ 3.5, Nbuzzard_visual¼ 5,
Npheasant_auditory ¼ 10, P¼ 0.005). Pigeons did not need more trials to
habituate tobuzzard calls than topheasantmodels (ManneWhitneyU
test:U¼ 22,Npheasant_visual¼ 10,Nbuzzard_auditory ¼ 5, P¼ 0.768; Fig. 2).
Hence, although simulated predator presence in general elicited
stronger responses than control displays, the sensory mode of per-
ception also affected the pigeons’ behavioural response.

Behavioural Response

A PCA revealed four independent components in the pigeons’
overall response that accounted for 78% of the total variance. The
calculated components corresponded to general contexts of behav-
iour (Table 2). Three of themwere observed during normal, daily ac-
tivity patterns of the birds. Sleeping behaviourwas clustered together
with retracting the neck and fluffing up the plumage and corre-
sponded to ‘resting behaviour’. Approaching and feeding the partner
were also positively correlated and together comprised ‘partner-
directed behaviour’. Looking at the stimulus and neck stretching
together with scanning represented general attentive behaviour,
summarized as ‘vigilance’. The fourth, independent component was
exclusively observed in the context of simulated predator presence.
The birds responded only to visual buzzard displays and buzzard calls
with rapid ‘scanning back and forth in the horizontal plane’
e past knowledge across sensorymodalities, Animal Behaviour (2013),
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(‘nystagmus’), a behaviour that was formerly reported as part of
antipredator responses in chicken (Evans 2002). This predator-
specific behaviour was performed together with scanning behaviour
and was directed to the stimulus or up into the sky.

Effect of Stimulus Order and Sensory Mode

To investigate whether pigeons interpreted dishabituation
stimuli as transmitting different information to habituation stimuli,
we compared principal components of behavioural responses in
both phases by means of Wilcoxon signed-ranks tests. Predator-
specific scanning behaviour (component 4) was reliably shown
whenever buzzard representations followed pheasant displays,
independent of the physical properties of the signal (comparison
within groups 1, 2, 5, 6; Wilcoxon signed-ranks tests: each T ¼ 0,
N ¼ 5, P < 0.05). Pigeons also responded with an increase in
predator-specific scanning to buzzard models that followed buz-
zard calls (Wilcoxon signed-ranks tests: group 4: T ¼ 0, N ¼ 5,
P < 0.05; Fig. 3). In contrast, the birds showed neither increased
levels of attentiveness (component 3) nor predator-specific scan-
ning when the order of stimulus presentation was switched and
buzzard playbacks followed visual presentations of the buzzard. In
addition to predator-specific scanning behaviour pigeons showed
an increase in general attentiveness to models of the buzzard fol-
lowing pheasant visual presentations (Wilcoxon signed-rank tests:
group 1: T ¼ 0, N ¼ 5, P < 0.05) or pheasant calls (Wilcoxon signed-
rank tests: group 6: T ¼ 0, N ¼ 5, P < 0.05). The birds did not show
any increase in vigilance to buzzard calls following pheasant dis-
plays or visual presentations of the buzzard following buzzard calls
(Fig. 3). In summary, the effectiveness of information about buzzard
presence in eliciting antipredator behaviour depended on the
Table 2
Independent variables revealed from principal component analysis

PC 1 PC 2

General context ‘Resting behaviour’ ‘Partner-directed behaviour
Percentage of total

variance explained
28.8 23.1

Variables Retracting neck,
fluffing up, sleeping

Approaching partner, feedin
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pigeons’ past and current experience. We did not find any differ-
ences in ‘resting’ (component 1) or ‘partner-directed behaviour’
(component 2) between experimental phases in any of the groups.
DISCUSSION

The present results provide the first evidence that individuals of
a species that does not produce specific alarm calls take past infor-
mation about predator presence cross-modally into account and
adjust their behaviour accordingly. Critically, the pigeons’ responses
cannot beexplainedon thebasis ofmere associative learning in terms
of the same physical signal properties reliably eliciting the same
behavioural response. Several species have been shown to integrate
cross-modal representations of conspecifics (Proops et al. 2009; Sliwa
et al. 2011) and heterospecifics (Adachi et al. 2007). However, these
advanced capabilities do not yet prove that these species have the
tremendous flexibility in information processing that is essential to
react selectively to the same information,dependingon thecontext in
which it is perceived. Nonhuman primates (e.g. Zuberbühler 2000;
Seyfarth & Cheney 2008) and birds (e.g. Evans 2002) that produce
alarm calls are known for the ability to infer the value of information
by comparing it with previous knowledge. Our results suggest that
the cognitive mechanisms underlying this ability are also present in
a bird species that does not produce such vocalizations, which sup-
ports the idea that interpretative mechanisms are part of the more
general ability of abstract class formation. The birds showed specific
predator-related behaviour only to buzzard stimuli in cases inwhich
theywere newly informed about predator presence or the threatwas
considerably more urgent. The birds did not show any response to
buzzard calls when they were previously warned of its presence by
visual presentations of the buzzard. In contrast, pigeons consistently
showed predator-specific behaviour, but no general attentive
behaviour, whenever buzzard models followed buzzard calls. We
suggest that although the referent of the signal was the same (buz-
zard), the inferred information also depended on the order of stim-
ulus presentation and additional information was coded by the
modality of signals. Thus, the pigeons’ behavioural response regard-
inggeneral attentivenessandpredator-specific scanningbehaviour to
displayedstimuliwasbasedon the referenceof the signal, thenovelty
of the information and the perceived urgency rather than on the
signals’ physical properties alone.

Raptors are frequently present in the pigeon’s environment and
produce calls without actually attacking. The birds thus benefit from
a reliable perception of the raptors’ presence but they should not al-
ways react as theydoduringpredation events (Warkentin et al. 2001).
However, if pigeons visually perceive the potential threat in their vi-
cinity (as simulated during visual presentations), the risk of predator
attacks, and thus the level of urgency, is increased. The importance of
visual information for the inference of urgency and predation avoid-
ance is further supported by the fact that the stuffed models of the
pheasant and the buzzard required a similar number of trials for the
birds to habituate to them. As the pheasant model was similar in size
and plumage colour to the buzzard model, the pigeons might have
perceived pheasant models as unfamiliar, disturbingly close and
considerably big birds, although theywere not interpreted as being as
threatening as the buzzard model. The pigeons did not show any
PC 3 PC 4

’ ‘Vigilance’ ‘Predatory response’
14 11

g Looking to stimulus,
stretching neck and scanning

Looking to stimulusþnystagmus,
looking aboveþnystagmus
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general attention (indicated by scanning and general vigilance) to
visual stimuli after acoustic habituation to the buzzard, as if they had
already inferred the presence of the buzzard by its calls, but instantly
looked at the stimulus (when the box was open) and above (after the
box was closed) and performed characteristic scanning behaviour.
This predator-specific scanningbehaviourmanifests in rapidback and
forth headmovements that facilitate fast depth perception bymotion
parallax. Especially forbirdsofpreywith laterallyplacedeyesand little
binocular overlap, motion parallax is thought to function to estimate
predator distance reliably (Evans 2002). As the position of stimulus
presentationwas kept constant in both sensorymodes,we consider it
unlikely that any variables (e.g. distance to playback source/models)
Please cite this article in press as: Stephan, C., Bugnyar, T., Pigeons integrat
http://dx.doi.org/10.1016/j.anbehav.2012.12.023
other than the sensory mode encoded different levels of urgency in
our study. However, a possible alternative interpretation of the pre-
sent results may be considered. As pigeons reacted with predator-
specific scanning behaviour also to visual presentations of the
buzzard that followed buzzards’ calls, it may be argued that birds did
not integrate predator cues cross-modally but only showed reliable
discrimination of predator (buzzard) and nonpredator (pheasant)
within one sensory mode and that they generally perceive visual
displays as beingmore urgent. However,we consider this explanation
highly unlikely for two reasons. First, the pigeons’ behavioural re-
sponses were composed of two independent components (vigilance
and predator-specific scanning). If we take both independent
e past knowledge across sensorymodalities, Animal Behaviour (2013),
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variables into account, the birds did not show the same responses
whenever visual buzzards were presented. Although they responded
with predator-specific scanning behaviour to buzzard models after
they were habituated to buzzard calls (probably to gain more infor-
mation about the exact distance of the threat), we did not find
increased levels of general vigilance. In contrast, when visual buzzard
presentations followed pheasant stimuli, pigeons were significantly
more vigilant, engaged in scanning the surroundings and additionally
performed predator-specific scanning during dishabituation. Second,
the pigeons needed comparable numbers of trials to habituate to
buzzard calls and to the buzzardmodel, suggesting that these stimuli
wereperceivedasbeingequally disturbingwhenpresented aloneand
for the first time. What we cannot (and do not) claim is to have
identified the level of discrimination. Our results show that pigeons
recognized predatory stimuli. The exact referent of the applied func-
tional class, namely whether pigeons actually recalled mental repre-
sentations of buzzards in particular, aerial predators or a predator in
general has to be addressed in further studies.

Taken together, the present study suggests that advanced
mechanisms of contextual interpretation of external information in
the context of predation can also be found in species that do not use
specific signals such as alarm calls. This extends the cognitive
abilities found in nonalarm-calling species and supports the pre-
viously found disparity in cognitive abilities of signallers and re-
ceivers in highly vocal species.

Pigeons have been reported to apply highly sophisticated
discriminative features during categorization, e.g. familiarity
(Nakamura et al. 2003) and people - nonpeople (Herrnstein &
Loveland 1964; Aust & Huber 2006). Furthermore the birds are capa-
ble of heterospecific discrimination (Belguermi et al. 2011) and rep-
resentational transfer between objects and their pictures (Aust &
Huber 2010) in visual discrimination tasks but, to our knowledge,
have not been shown to possess cross-modal contextual under-
standing in apredatorycontext. Pigeonsmaydiscriminateon thebasis
of functional classes between predators and nonpredators, or recog-
nize different subcategories (e.g. aerial and ground predators) or even
species of predators. To tackle the level of classification, different
species of predators and nonpredators could be used and the pigeons’
cross-modal transferbetween these couldbe tested. If pigeons reacted
differently to both predators, depending on the stimulus species and
notonthegeneral contextofpredation,onecouldsuccessivelyexclude
crucial featuresof recognition.However, ifpigeonsdiscriminateon the
basis of ‘predators’ and ‘nonpredators’ we would expect the same
results as presented here. To test different cognitive mechanisms that
underpin communicative abilities in sending and receiving signals,
further studies on nonalarm-calling species may investigate their
abilities regarding, for example, heterospecific alarm call recognition,
audience effects or predator specificity of behavioural responses.
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Table A1
Response variables

Variable Description

PC 1 (‘resting’) Retracting neck Retraction of neck, individual
sitting or standing on perch,
plumage splayed out

Fluffing up Plumage splayed out,
individual sitting or standing
on perch

Sleeping Individual sitting, beak in
plumage at the back, eyes
closed

PC 2 (‘partner-
directed’)

Approaching partner Direct approach to conspecific,
resulting in high spatial
proximity (usually directly
next to each other)

Feeding Pigeon puts its beak into the
partner’s bill

PC 3 (‘vigilance’) Looking to stimulus Looking at cardboard box (in
combination with neck
stretching)

Stretching neck &
scanning

Stretching the neck in
combination with scanning
behaviour

PC 4 (‘predatory
response’)

Looking to stimulusþ
predator-related
scanning behaviour
(nystagmus)

Looking at cardboard boxþ
rapid, high-frequency back
and forth neck movement
(in one direction, owing to
motion parallax)

Looking aboveþ
predator-related

Looking aboveþrapid, high-
frequency back and forth
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scanning behaviour
(nystagmus)

neck movement of the neck
(in one direction, owing to
motion parallax)

Variables with
complex
structure
(removed)

Looking above Looking above (not coded if
the pigeon flies to a perch
above afterwards)

Looking to partner Looking at conspecific; not
Appendix
coded during partner-
directed behaviour (e.g.
feeding)

Foraging Looking for and pecking
food with head bowed

Grooming Allogrooming
Preening Self-preening, cleaning

the plumage with the beak
or scratching with the claws

Approaching stimulus Pigeon on the floor and
moving towards the
cardboard box while
looking at it

Retreat from stimulus Quick retreat from box
Stretching Stretching of wings and legs

Descriptions of original variables are given and principal components on which the
variables loaded are indicated as well as which variables had to be excluded because
of their complex structure (loadings >0.4 on more than one component).

Table A2
Rotated component matrix

Component

1 2 3 4

Retracting neck 0.74 �0.244 �0.087 0.014
Fluffing up 0.857 �0.17 �0.175 0.29
Sleeping 0.852 0.057 0.151 �0.087
Approaching partner �0.156 0.869 �0.025 0.171
Feeding �0.92 0.872 �0.08 0
Looking to stimulus 0.064 �0.321 0.814 �0.107
Stretching neck & scanning �0.109 0.129 0.81 0.019
Looking to stimulusþnystagmus 0.17 �0.021 0.147 0.871
Looking aboveþnystagmus �0.08 0.258 �0.326 0.784

Loadings of original variables on the different components are presented. Loadings
higher than 0.4 are highlighted in bold.
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Figure A1. Spectrograms of acoustic stimuli: (a) buzzard territory calls, (b) pheasant
territory calls.
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Table A3
Interobserver reliability

Behavioural variable k

Retracting neck 0.97
Fluffing up 0.97
Sleeping 0.95
Approaching partner 0.92
Feeding 0.88
Looking to stimulus 0.99
Stretching neck & scanning 0.92
Looking to stimulusþnystagmus 0.98
Looking aboveþnystagmus 0.97

Cohen’s kappa coefficients are given for single variables.
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